

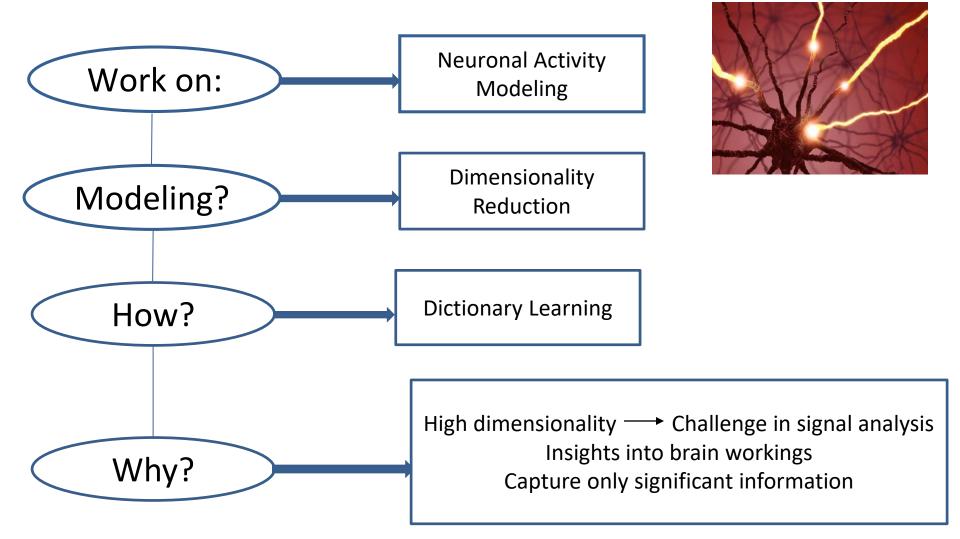
Dictionary Learning for Spontaneous Neural Activity Modeling

<u>E. Troullinou^{1,3},</u> G. Tsagkatakis¹, G. Palagina², M. Papadopouli^{1,3}, S.M. Smirnakis², P. Tsakalides^{1,3}

Institute of Computer Science, FORTH¹ Harvard Medical School² Computer Science Department, UoC³

- I. Introduction
- II. Proposed Approach
- III. Experimental Results
- IV. Conclusion

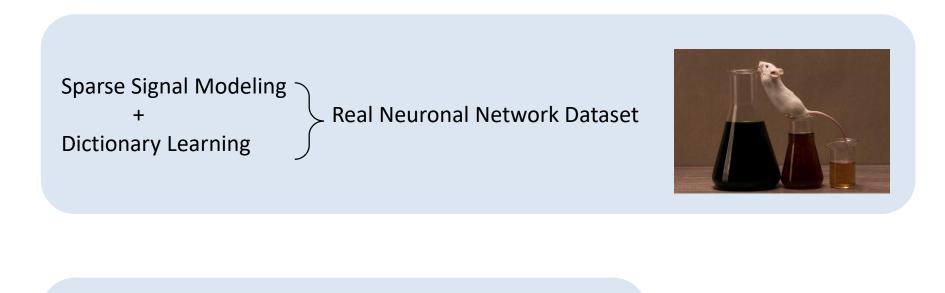
What - Why - How

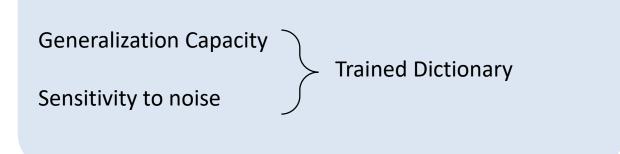


spl.edu.gr

Introduction

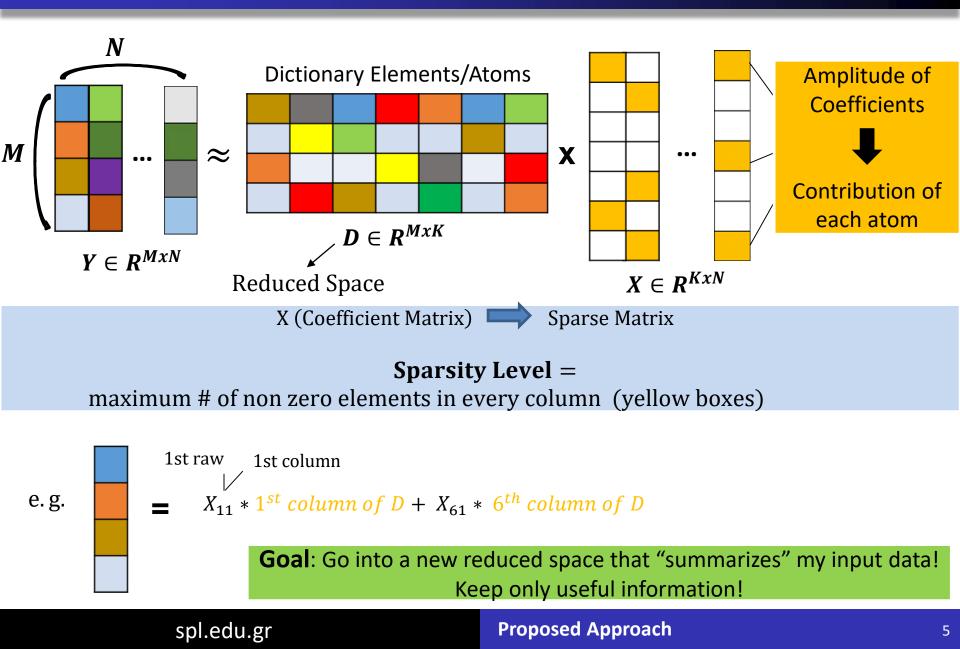
Innovative Aspects





Introduction

Sparse Signal Modeling



Why Imposing the Criterion of Sparsity?

- 1. Time Complexity
- 2. Avoid Overfitting

More General Examples

- > If **Y** was an image, dictionary should capture:
- Important Edges
- Intensities

- > If **Y** was a song, dictionary should capture:
- Basic notes and their combinations

spl.edu.gr

Norms

Norms:

zero norm:
$$||x||_0 = (i|x_i \neq 0)$$

$$l_1 norm: ||x||_1 = \sum_{i=1}^R |x|_i$$

$$l_2 norm: ||x||_2 = (\sum_{i=1}^R |x|_i^2)^{1/2}$$

$$l_p norm: ||x||_p = (\sum_{i=1}^R |x|_i^p)^{1/p}$$

Frobenius norm (matrix norm):
$$||x||_F =$$

$$\left|\sum_{i=1}^{M}\sum_{j=1}^{N}\left|x_{ij}\right|^{2}\right|$$

spl.edu.gr

Orthogonal Matching Pursuit (OMP)

Optimization Problem – Sparse Coding:

 $\min_{x_i} \|\boldsymbol{y}_i - \boldsymbol{D}\boldsymbol{x}_i\|_2^2 \quad subject \ to \quad \|\boldsymbol{x}_i\|_0 \le T_0 \ \forall i, \qquad where$

 y_i : input vector D: trained dictionary x_i : coefficient vector $\|.\|_0$: zero norm T_0 : Sparsity Level

OMP (Orthogonal Matching Pursuit)

Basic Idea: Approximately represent a signal y as a weighted sum of finitely many functions d_i (dictionary elements) taken from D. For an approximation with N dictionary elements:

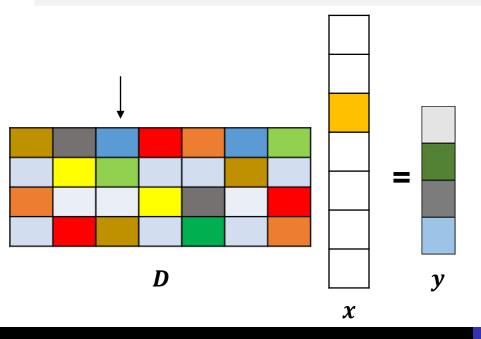
$$y = \sum_{j=1}^{N} x_j d_j$$
 , where

 x_i is the scalar weighting factor (coefficient) for d_i

spl.edu.gr

OMP Visualization

- 1. Set the residual $r_1 = y$ Iteratively: Set j=1
- 2. Find an unselected atom that best matches the residual $||r^j Dx||$
- 3. Get the coefficient of *x*
- 4. Recalculate the residual from matched atoms $r^{j+1} = r^j Dx$
- 5. Repeat until $||r^j|| \leq \epsilon$



$$r_1 = y$$

 $r_2 = r_1 - x_j d_j = y - x_j d_j$
 $r_3 = r_2 - x_{j'} d_{j'} = y - x_j d_j - x_{j'} d_{j'}$

$$r_n = y - \sum_{j=1}^N x_j d_j$$

spl.edu.gr

Dictionary Learning

The Dictionary can be one of the following:

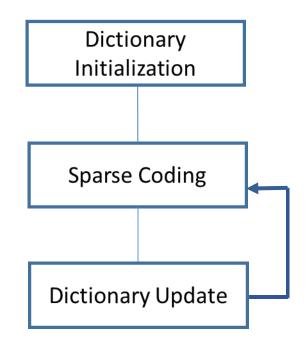
- Parametric: Fourier signals, wavelets, etc.
- <u>Trained</u>: Learning from randomly selected input examples

K-SVD Algorithm

For Sparsity Level T_0 , K-SVD solves the following:

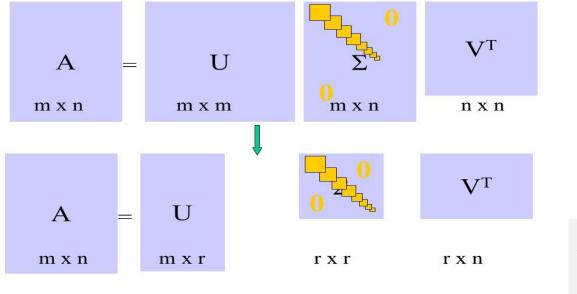
$$\min_{D,X} ||Y - DX||_F^2 \text{ subject to } ||X_i||_0 \leq T_0 \quad \forall i, \text{ where}$$

Y: Input Signal D: Trained Dictionary X: Coefficient Matrix $\|.\|_F$ denotes the Frobenius norm T_0 : sparsity level



spl.edu.gr

Singular Value Decomposition (SVD)



A singular value and a pair of singular vectors of a matrix A are a nonnegative scalar σ and two nonzero vectors u and v s.t.:

 $Au = \sigma v$ $A^{H}v = \sigma u$ A^{H} denotes the complex conjugate transpose of a matrix

U is an mxm orthogonal matrix

Σ is a diagonal mxn matrix with non-negative real numbers in the diagonal (singular values of A)

V is an nxn orthogonal matrix

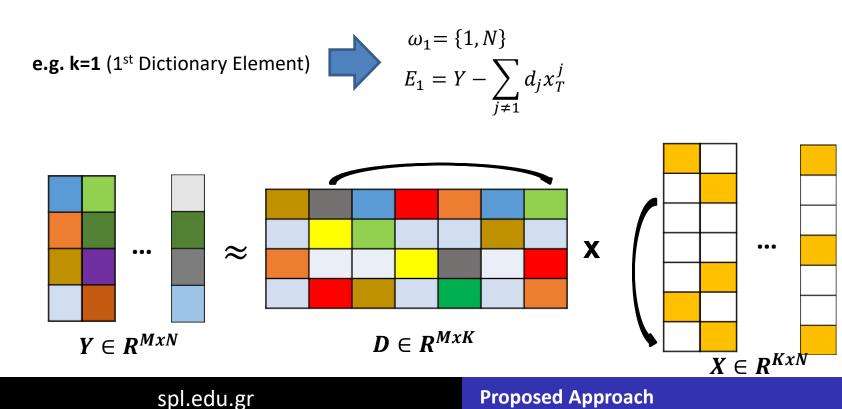
 V^T is the transpose of V

spl.edu.gr

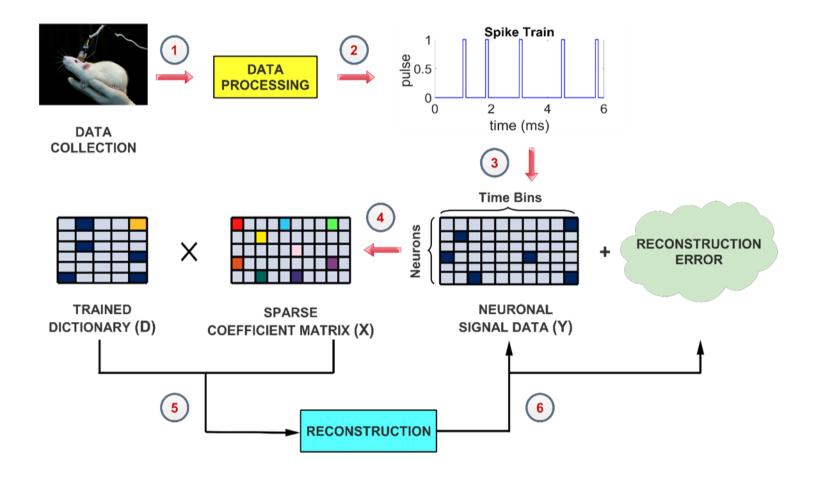
Dictionary Update

For each column k = 1, 2, ..., K in D update it by

- Define the group of examples that use this atom, $\omega_{\kappa} = \{i | 1 \le i \le N, x_T^k(i) \ne 0\}$
- Compute the overall representation error matrix, E_k , by $E_k = Y \sum_{j \neq k} d_j x_T^j$
- Restrict E_k by choosing only the columns corresponding to ω_{κ} , and obtain E_k^R .
- Apply SVD decomposition $E_k^R = U\Sigma V^T$. Choose the updated dictionary column d'_k to be the first column of U.

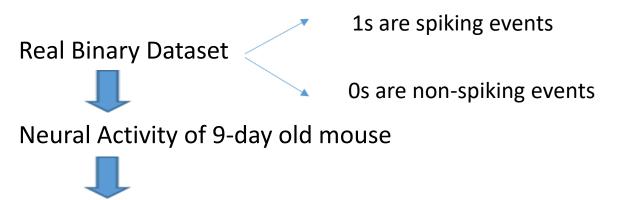


Proposed Dictionary Learning Framework

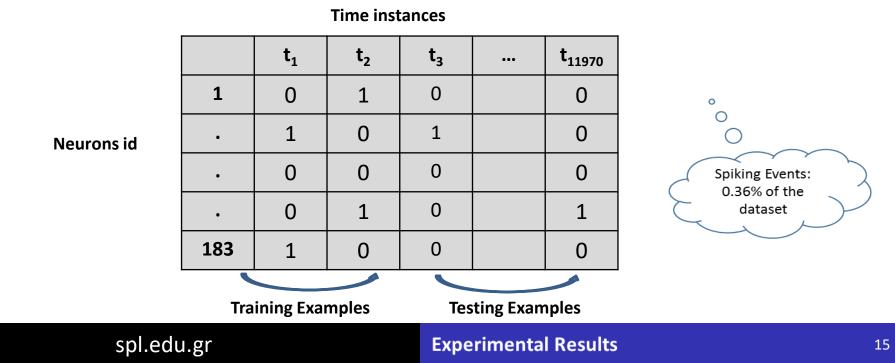


spl.edu.gr

Dataset



29 min. spontaneous activity (11970 frames of 0.1451 sec.)



K-SVD Performance - Parameters

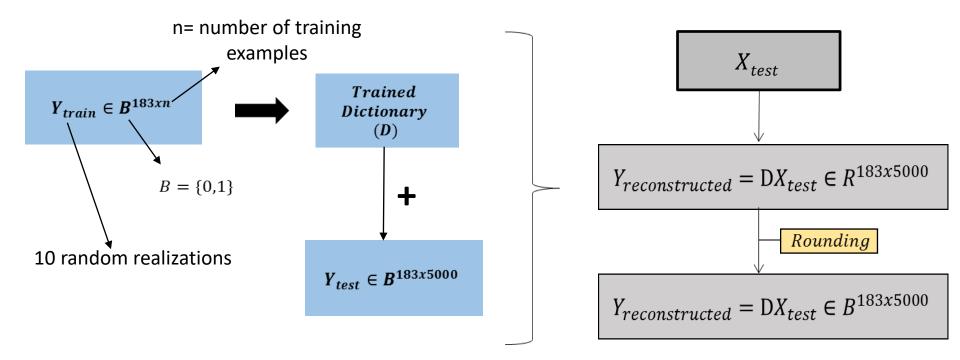
K-SVD Performance in neuronal signal reconstruction in terms of:

- i. Dictionary size
- ii. Sparsity level
- iii. Training size used for dictionary learning

Can we achieve a good reconstruction?

Can we model the data?

Experimental Setup

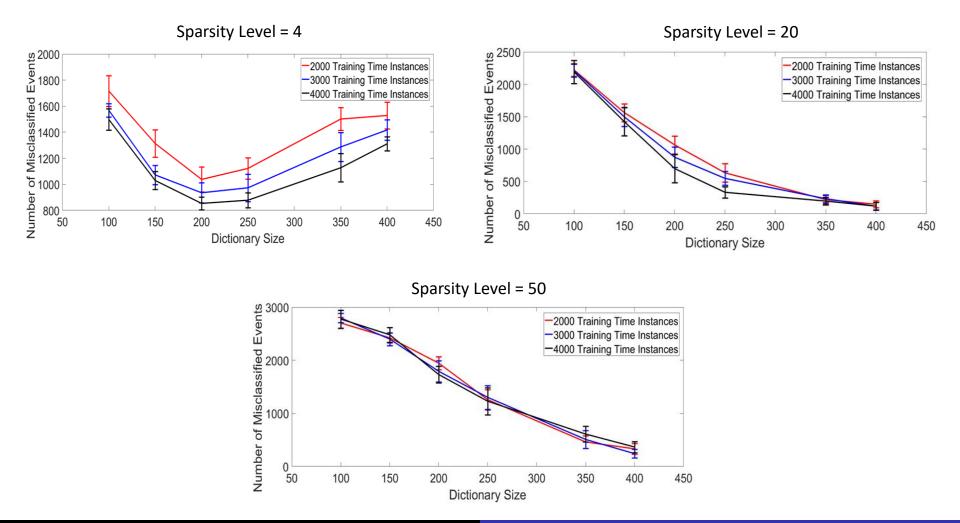


Number of misclassified Events = # { $Y_{test} \neq Y_{reconstructed}$ }

spl.edu.gr

Impact of the Examined Parameters

Total number of events = 915000 (183x5000)



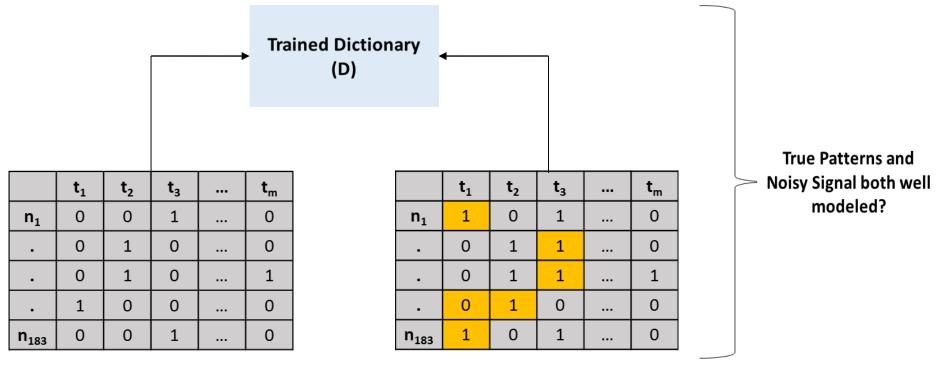
spl.edu.gr

Confusion Matrix of the Reconstructed Events

Dictionary Size = 400

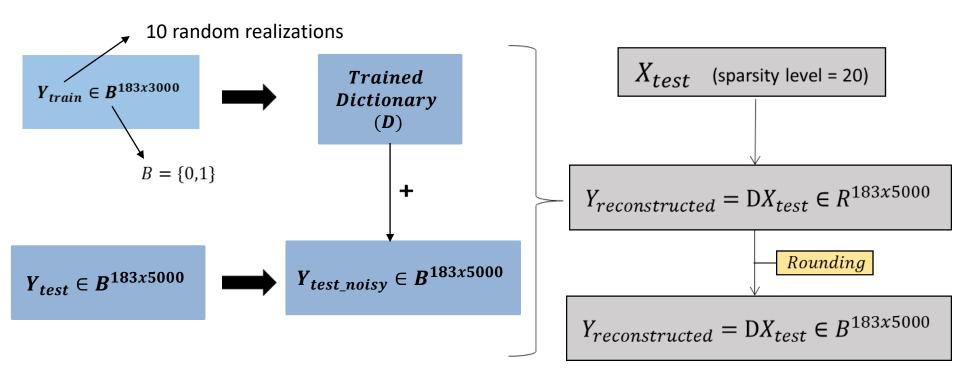
Training Examples		2000		4000	
Sparsity	Predicted Actual	0	1	0	1
4	0	99.982	0.017	1	0
	1	58.914	41.085	46.636	53.363
20	0	99.997	0.00241	99.998	0.00120
	1	19.668	80.331	18.491	81.508
50	0	99.982	0.017	99.998	0.00186
	1	32.639	67.36	52.82	47.179

Trained Dictionary – Sensitivity to noise



True Patterns

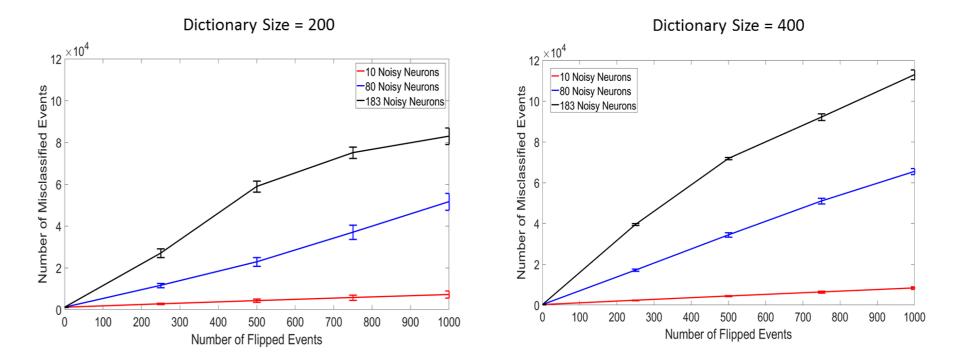
Experimental Setup



Number of misclassified Events = $\# \{Y_{test_noisy} \neq Y_{reconstructed}\}$

spl.edu.gr

Total number of events = 915000 (183x5000)



Number of misclassified Events = $\# \{Y_{test_noisy} \neq Y_{reconstructed}\}$

spl.edu.gr

Conclusion – Concerns – Future Work

Neuronal Signals – Dictionary Learning

- Effectively represented in low-dimensional subspaces
- > Small training size is adequate
- Average Sparsity level

Dictionary – Sensitivity to noise

Random noise is not modeled

Concerns - Future Work

- > Deal with other types of noise (e.g. Circularly Shifted Events)
- Find a suitable metric to check the consistency of the dictionary
- Focus on qualitative characteristics of the Dictionary
- Adversarial Learning Methods

spl.edu.gr

Conclusion

ACKNOWLEDGMENT

This work was partially funded by the **DEDALE** project, contract no. 665044, within the H2020 Framework Program of the European Commission.