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What - Why - How

Neuronal Activity
Work on: Modeling
] Dimensionality
Modeling? Reduction
<H OW?>_’ Dictionary Learning

High dimensionality — Challenge in signal analysis

hy? Insights into brain workings
W y: Capture only significant information
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Innovative Aspects

Sparse Signal Modeling
+ Real Neuronal Network Dataset
Dictionary Learning

Generalization Capacity
Trained Dictionary

Sensitivity to noise
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Sparse Signal Modeling

Dictionary Elements/Atoms Amplitude of
Coefficients

y =P |
- Contribution of

D e RMxK each atom

Y € RMxN /
Reduced Space X € RKxN

X (Coefficient Matrix) ‘ Sparse Matrix

Sparsity Level =
maximum # of non zero elements in every column (yellow boxes)

1straw  1st column

L/
€. g — X11 * + X61 *

Goal: Go into a new reduced space that “summarizes” my input data!
Keep only useful information!
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Why Imposing the Criterion of Sparsity?

2
1. Time Complexity I
2. Avoid Overfitting |
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More General Examples

> If Y was an image, dictionary should capture: .

Important Edges

Intensities

> |f Y was a song, dictionary should capture:

Basic notes and their combinations
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Norms:

zero norm: ||x||o = (i]x; # 0)

R

[, norm: ||x||; = leli

i=1

R
2
L norm: lxll; = () 1x1:%)"/2
i=1

R
L, norm: lixll, = () 1x1,7) 7
i=1

M N
2
Frobenius norm (matrix norm): ||x||z = z zlxijl

i=1j=1
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Orthogonal Matching Pursuit (OMP)

Optimization Problem — Sparse Coding:

min||y; — Dx;||5 subjectto |x;llo < To Vi, where
X

y;: input vector

D: trained dictionary
x;: coefficient vector
I.llo :zero norm

To: Sparsity Level

OMP (Orthogonal Matching Pursuit)

Basic Idea: Approximately represent a signal y as a weighted sum of finitely many functions
d; (dictionary elements) taken from D. For an approximation with N dictionary elements:

N
y = z xjd; where
j=1

x; is the scalar weighting factor (coefficient) for d;
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OMP Visualization

1. Settheresidualr, =y
Iteratively: Set j=1

B3

2. Find an unselected atom that best matches the residual ||rj — Dx||
3. Get the coefficient of x
4. Recalculate the residual from matched atoms r/*1 = rJ — Dx
5. Repeat until ||r1|| <€
6. j=j+1

n=Yy

rp,=rn —Xxid; =y —Xx;d;
T3 =1y — ledj/ = y — x]d] — xj’dj,
= N
=y — Z xjd;
j=1
D y
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Dictionary Learning

The Dictionary can be one of the following:
o Parametric: Fourier signals, wavelets, etc.

o Trained: Learning from randomly selected input examples

K-SVD Algorithm

Dictionary
Initialization

For Sparsity Level Ty, K-SVD solves the following:

IBi}?”Y—DX”% subject to || X;ll, < T, Vi, where

Sparse Coding

Y: Input Signal

D: Trained Dictionary
X: Coefficient Matrix

Dictionary Update

|I. || denotes the Frobenius norm
To: sparsity level
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Singular Value Decomposition (SVD)

The Singular Value Decomposition

% T
S A\

m X n m X m mXxXn nxn

T v

A = U

A — ]
A singular value and a pair of singular vectors
mxXn mXxXr rxr rxn . .
of a matrix A are a nonnegative scalar ¢ and
two nonzero vectors u and v s.t.:
Au = ov
Ay = ogu

A" denotes the complex conjugate
transpose of a matrix

U is an mxm orthogonal matrix
2 is a diagonal mxn matrix with non-negative real numbers in the diagonal (singular values of A)

V is an nxn orthogonal matrix
VT is the transpose of V
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Dictionary Update

For each columnk=1, 2,...,Kin D update it by
Define the group of examples that use this atom, w, = {i|1 < i < N, xX(i) # 0}
Compute the overall representation error matrix, Ej, by Ex=Y — Zjik djx{w

Restrict Ej by choosing only the columns corresponding to w,., and obtain E,’f :

Apply SVD decomposition E,’f = UXVT . Choose the updated dictionary column d}, to be the first column
of U.

wq1= {1; N}
- St . . ]
e.g. k=1 (15t Dictionary Element) » Eo—y— z d;xc)

Y € RMxN D € RM*K

X € RKx
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Proposed Dictionary Learning Framework
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Dataset

v 1s are spiking events
Real Binary Dataset

l A Os are non-spiking events

Neural Activity of 9-day old mouse

! ]

29 min. spontaneous activity (11970 frames of 0.1451 sec.)

Time instances

tl t2 t3 e t11970
1 0 1 0 0 o
O
Neuronsid 1 0 1 0 O
O O 0 O Spiking Events:
0.36% of the
0 1 0 1 dataset
183 1 0 0 0

S~ -

Training Examples Testing Examples
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K-SVD Performance - Parameters

K-SVD Performance in neuronal signal reconstruction in terms of:
I. Dictionary size
ii. Sparsity level

iii. Training size used for dictionary learning

4

Can we achieve a good reconstruction?

g

Can we model the data?
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Experimental Setup

n= number of training -
exa mples
Trained
Yirain €B 183xn - Dictionary

Xtest

l

\ (D)
\ = {0,1} + —

10 random realizations

183x5000
Yiest €B

- 183x5000
Yreconstructed = DX test ER
— Rounding
— 183x5000
Yreconstructed = DX test €B

Number of misclassified Events = # {Y;ost # Yreconstructed}
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Impact of the Examined Parameters

Total number of events = 915000 (183x5000)

Sparsity Level = 4 Sparsity Level = 20
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Confusion Matrix of the Reconstructed Events

Dictionary Size = 400

Training Examples 2000 4000

Sparsity Actuar R 0 1 0 1
0 99.982 0.017 1 0

¢ 1 58.914 | 41.085 | 46.636 | 53.363

0 99.997 | 0.00241 | 99.998 | 0.00120

20 1 19.668 | 80.331 | 18.491 | 81.508

0 99.982 0.017 99.998 | 0.00186

>0 1 32.639 67.36 52.82 47.179
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Trained Dictionary — Sensitivity to noise

(D)

t, |t |t t,
n | 0| o0 1 0
ol 1]o0 0

ol 1]o0 1
1101 o0 0

ng| O | 0 | 1 0

True Patterns
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_ Trained Dictionary

True Patterns and

t, t, t, t, — Noisy Signal both well
n, 1 0 1 0 modeled?
0 1 1 0
0 1 1 1
0 1 0 0
Nygs | 1 0o | 1 0
Noisy Signal
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Experimental Setup

10 random realizations

v~ gisaxaooo Tr‘fined Xtest (sparsity level = 20)
train - Dictionary
\ (D)
B = {0,1}
-+ — 183x5000
— Yreconstructed = DX test € R
\ 4
183x5000 — | Rounding
Y;ese € B183%5000 - Yiest noisy € B
— 183x5000
Yreconstructed = DX test €B

Number of misclassified Events= # {Y *+Y

reconstructed }

test_noisy
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Total number of events = 915000 (183x5000)

Dictionary Size = 200 Dictionary Size = 400
L0t 4
12 x10 - : - 12 x10
10 Noisy Neurons —10 Noisy Neurons
—80 Noisy Neurons —80 Noisy Neurons
10+ —183 Noisy Neurons - 107 —183 Noisy Neurons

oo
T

Number of Misclassified Events
(=5

Number of Misclassified Events
(a3]

—s
-

H

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of Flipped Events Number of Flipped Events

Number of misclassified Events = # {Vest noisy # Y reconstructed }
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Conclusion — Concerns — Future Work
+» Neuronal Signals — Dictionary Learning

» Effectively represented in low-dimensional subspaces

» Small training size is adequate
» Average Sparsity level

+ Dictionary — Sensitivity to noise

» Random noise is hot modeled

« Concerns - Future Work

» Deal with other types of noise (e.g. Circularly Shifted Events)

» Find a suitable metric to check the consistency of the
dictionary

» Focus on qualitative characteristics of the Dictionary
» Adversarial Learning Methods
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